On the effective and automatic enumeration of polynomial permutation classes

نویسندگان

  • Cheyne Homberger
  • Vincent Vatter
چکیده

The “Fibonacci Dichotomy” of Kaiser and Klazar [15] was one of the first general results on the enumeration of permutation classes. It states that if there are fewer permutations of length n in a permutation class than the nth Fibonacci number, for any n, then the enumeration of the class is given by a polynomial for sufficiently large n. Since the Fibonacci Dichotomy was established for permutation classes, Balogh, Bollobás, and Morris [6] showed that it extends to the (more general) context of ordered graphs, while other proofs of the Fibonacci Dichotomy for permutations have been given by Huczynska and Vatter [14] and Albert, Atkinson, and Brignall [3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration Schemes for Words Avoiding Permutations

The enumeration of permutation classes has been accomplished with a variety of techniques. One wide-reaching method is that of enumeration schemes, introduced by Zeilberger and extended by Vatter. In this paper we further extend the method of enumeration schemes to words avoiding permutation patterns. The process of finding enumeration schemes is programmable and allows for the automatic enumer...

متن کامل

On the Enumeration and Counting of Minimal Dominating sets in Interval and Permutation Graphs

We reduce (in polynomial time) the enumeration of minimal dominating sets in interval and permutation graphs to the enumeration of paths in DAGs. As a consequence, we can enumerate in linear delay, after a polynomial time pre-processing, minimal dominating sets in interval and permutation graphs. We can also count them in polynomial time. This improves considerably upon previously known results...

متن کامل

Enumeration Schemes for Restricted Permutations

Zeilberger’s enumeration schemes can be used to completely automate the enumeration of many permutation classes. We extend his enumeration schemes so that they apply to many more permutation classes and describe the Maple package WilfPlus, which implements this process. We also compare enumeration schemes to three other systematic enumeration techniques: generating trees, substitution decomposi...

متن کامل

Type-Itemized Enumeration of RS-Stereoisomers of Octahedral Complexes

Stereoisograms of octahedral complexes are classified into five types (type I--typeV) under the action of the corresponding RS-stereoisomeric group. Their enumeration is accomplished in a type-itemized fashion, where Fujita's proligand method developed originally for combinatorial enumeration under point groups (S. Fujita, Theor. Chem. Acc., 113, 73--79 (2005)) is extended to meet the requireme...

متن کامل

Enumeration of planar constellations

The enumeration of transitive ordered factorizations of a given permutation is a combinatorial problem related to singularity theory. Let n > 1, m > 2, and let 0 be a permutation of Sn having di cycles of length i, for i > 1. We prove that the number of m-tuples (1 ; : : : ; m) of permutations of Sn such that: A one-to-one correspondence relates these m-tuples to some rooted planar maps, which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2016